Conormal and Piecewise Smooth Solutions to Quasilinear Wave Equations
نویسندگان
چکیده
منابع مشابه
Conormal and Piecewise Smooth Solutions
In this paper, we show first that if a solution u of the equation i*2(l, x, u, Du, D)u = f{t, x,u, Du), where Pi{t, x,u, Du, D) is a second order strictly hyperbolic quasilinear operator, is conormal with respect to a single characteristic hypersurface S of Pi in the past and S is smooth in the past, then S is smooth and u is conormal with respect to S for all time. Second, let So arjd Si be ch...
متن کاملGlobal solutions of quasilinear wave equations
has a global solution for all t ≥ 0 if initial data are sufficiently small. Here the curved wave operator is ̃g = g ∂α∂β, where we used the convention that repeated upper and lower indices are summed over α, β = 0, 1, 2, 3, and ∂0 = ∂/∂t, ∂i = ∂/∂x i, i = 1, 2, 3. We assume that gαβ(φ) are smooth functions of φ such that gαβ(0)= mαβ , where m00=−1, m11= m22= m33=1 and mαβ= 0, if α 6=β. The resul...
متن کاملModulating pulse solutions for quasilinear wave equations
This paper presents an existence proof for symmetric modulating pulse solutions of a quasilinear wave equation. Modulating pulse solutions consist of a pulse-like envelope advancing in the laboratory frame and modulating an underlying wave-train; they are also referred to as ‘moving breathers’ since they are time-periodic in a moving frame of reference. The problem is formulated as an infinite-...
متن کاملExistence and Uniqueness of Solutions of Quasilinear Wave Equations (ii)
In this work we prove a result concernig the existence and uniqueness of solutions of quasilinear wave equation and we consider also their trivial solutions. We consider the following initial-boundary value problem for the nonlinear wave equation in the form u+ f (u) + g (u̇) = 0 in [0, T ) × Ω (QL) with initial values u0 = u (0, ·) , u1 = u̇ (0, ·) and boundary vale null, that is, u (t, x) = 0 o...
متن کاملGlobal Weak Entropy Solutions to Quasilinear Wave Equations of Klein{gordon and Sine{gordon Type
We establish the existence of global Lipschitz continuous weak entropy solutions to the Cauchy problem for a class of quasilinear wave equations with an external positional force. We prove the consistency and the convergence of uniformly bounded nite{diierence fractional step approximations. Therefore the uniform bound is shown to hold for globally Lipschitz continuous external forces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1995
ISSN: 0002-9947
DOI: 10.2307/2154785